Properties

Label 34496.f
Number of curves $1$
Conductor $34496$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 34496.f1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 34496.f do not have complex multiplication.

Modular form 34496.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + 6 q^{9} + q^{11} + q^{13} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 34496.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34496.f1 34496bv1 \([0, 0, 0, -83020, 9203152]\) \(39411764973000/19487171\) \(31289225347072\) \([]\) \(172032\) \(1.5428\) \(\Gamma_0(N)\)-optimal