Properties

Label 340704.el
Number of curves $4$
Conductor $340704$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("el1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 340704.el have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 340704.el do not have complex multiplication.

Modular form 340704.2.a.el

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + q^{7} + 4 q^{11} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 340704.el

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
340704.el1 340704el2 \([0, 0, 0, -756444, 252742880]\) \(3321287488/7371\) \(106236560434507776\) \([2]\) \(4128768\) \(2.1497\)  
340704.el2 340704el4 \([0, 0, 0, -657579, -204290242]\) \(17454600584/93639\) \(168699723282574848\) \([2]\) \(4128768\) \(2.1497\)  
340704.el3 340704el1 \([0, 0, 0, -64389, 834860]\) \(131096512/74529\) \(16783901040868416\) \([2, 2]\) \(2064384\) \(1.8031\) \(\Gamma_0(N)\)-optimal
340704.el4 340704el3 \([0, 0, 0, 255021, 6648122]\) \(1018108216/599781\) \(-1080563533678766592\) \([2]\) \(4128768\) \(2.1497\)