Show commands for:
SageMath
sage: E = EllipticCurve("z1")
sage: E.isogeny_class()
Elliptic curves in class 338130z
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
338130.z3 | 338130z1 | [1, -1, 0, -72015, 7538425] | [2] | 2654208 | \(\Gamma_0(N)\)-optimal |
338130.z2 | 338130z2 | [1, -1, 0, -1155765, 478536175] | [2] | 5308416 | |
338130.z4 | 338130z3 | [1, -1, 0, 253110, 38194100] | [2] | 7962624 | |
338130.z1 | 338130z4 | [1, -1, 0, -1307490, 345008060] | [2] | 15925248 |
Rank
sage: E.rank()
The elliptic curves in class 338130z have rank \(0\).
Complex multiplication
The elliptic curves in class 338130z do not have complex multiplication.Modular form 338130.2.a.z
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.