Show commands for:
SageMath
sage: E = EllipticCurve("e1")
sage: E.isogeny_class()
Elliptic curves in class 338130.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
338130.e1 | 338130e1 | [1, -1, 0, -46005, -1692235] | [2] | 2359296 | \(\Gamma_0(N)\)-optimal |
338130.e2 | 338130e2 | [1, -1, 0, 162075, -12886939] | [2] | 4718592 |
Rank
sage: E.rank()
The elliptic curves in class 338130.e have rank \(2\).
Complex multiplication
The elliptic curves in class 338130.e do not have complex multiplication.Modular form 338130.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.