Minimal Weierstrass equation
\(y^2+xy=x^3-x^2-46005x-1692235\)
Mordell-Weil group structure
\(\Z^2 \times \Z/{2}\Z\)
Infinite order Mordell-Weil generators and heights
\(P\) | = | \( \left(-89, 1345\right) \) | \( \left(-119, 1504\right) \) |
\(\hat{h}(P)\) | ≈ | $0.76168032853427041437734445666$ | $4.3478685916292257195343085059$ |
Torsion generators
\( \left(-38, 19\right) \)
Integral points
\( \left(-182, 883\right) \), \( \left(-182, -701\right) \), \( \left(-119, 1504\right) \), \( \left(-119, -1385\right) \), \( \left(-89, 1345\right) \), \( \left(-89, -1256\right) \), \( \left(-38, 19\right) \), \( \left(251, 1464\right) \), \( \left(251, -1715\right) \), \( \left(778, 20419\right) \), \( \left(778, -21197\right) \), \( \left(1562, 60339\right) \), \( \left(1562, -61901\right) \), \( \left(8581, 790315\right) \), \( \left(8581, -798896\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 338130 \) | = | \(2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(4977637893146880 \) | = | \(2^{8} \cdot 3^{6} \cdot 5 \cdot 13 \cdot 17^{7} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{611960049}{282880} \) | = | \(2^{-8} \cdot 3^{3} \cdot 5^{-1} \cdot 13^{-1} \cdot 17^{-1} \cdot 283^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(2\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(3.1962387019637388625502965793\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.34074779733173790934388856863\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 32 \) = \( 2\cdot2^{2}\cdot1\cdot1\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (rounded) |
Modular invariants
Modular form 338130.2.a.e
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 2359296 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L^{(2)}(E,1)/2! \) ≈ \( 8.7128903795247770884061938993587487091 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(I_{8}\) | Non-split multiplicative | 1 | 1 | 8 | 8 |
\(3\) | \(4\) | \(I_0^{*}\) | Additive | -1 | 2 | 6 | 0 |
\(5\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(13\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(17\) | \(4\) | \(I_1^{*}\) | Additive | 1 | 2 | 7 | 1 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X9.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 2 & 1 \end{array}\right)$ and has index 6.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class 338130e
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{1105}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$4$ | 4.0.159120.3 | \(\Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.30915344921760000.122 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.