Properties

Label 338130.cr
Number of curves $4$
Conductor $338130$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 338130.cr have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 338130.cr do not have complex multiplication.

Modular form 338130.2.a.cr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{8} - q^{10} - q^{13} + q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 338130.cr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
338130.cr1 338130cr3 \([1, -1, 1, -1257638, 543069947]\) \(12501706118329/2570490\) \(45231081829592490\) \([2]\) \(4718592\) \(2.1929\)  
338130.cr2 338130cr2 \([1, -1, 1, -87188, 6535667]\) \(4165509529/1368900\) \(24087558370788900\) \([2, 2]\) \(2359296\) \(1.8464\)  
338130.cr3 338130cr1 \([1, -1, 1, -35168, -2453389]\) \(273359449/9360\) \(164701253817360\) \([2]\) \(1179648\) \(1.4998\) \(\Gamma_0(N)\)-optimal
338130.cr4 338130cr4 \([1, -1, 1, 250942, 44676731]\) \(99317171591/106616250\) \(-1876050219263366250\) \([2]\) \(4718592\) \(2.1929\)