Show commands: SageMath
Rank
The elliptic curves in class 3366q have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 3366q do not have complex multiplication.Modular form 3366.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3366q
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3366.l2 | 3366q1 | \([1, -1, 1, -2381, 2805]\) | \(2046931732873/1181672448\) | \(861439214592\) | \([2]\) | \(3840\) | \(0.97968\) | \(\Gamma_0(N)\)-optimal |
3366.l1 | 3366q2 | \([1, -1, 1, -26861, 1696821]\) | \(2940001530995593/8673562656\) | \(6323027176224\) | \([2]\) | \(7680\) | \(1.3263\) |