Curve |
Isogeny class |
|
LMFDB label |
Cremona label |
LMFDB label |
Cremona label |
Weierstrass coefficients |
Rank |
Torsion structure |
3366.a1 |
3366g1
|
3366.a |
3366g
|
$[1, -1, 0, -1764, 28944]$ |
$1$ |
$[2]$ |
3366.a2 |
3366g2
|
3366.a |
3366g
|
$[1, -1, 0, -1404, 40824]$ |
$1$ |
$[2]$ |
3366.b1 |
3366b2
|
3366.b |
3366b
|
$[1, -1, 0, -9972963, -8638649195]$ |
$0$ |
$[2]$ |
3366.b2 |
3366b1
|
3366.b |
3366b
|
$[1, -1, 0, -3706083, 2640481429]$ |
$0$ |
$[2]$ |
3366.c1 |
3366i2
|
3366.c |
3366i
|
$[1, -1, 0, -1638, -25110]$ |
$1$ |
$[2]$ |
3366.c2 |
3366i1
|
3366.c |
3366i
|
$[1, -1, 0, -108, -324]$ |
$1$ |
$[2]$ |
3366.d1 |
3366c3
|
3366.d |
3366c
|
$[1, -1, 0, -17433, 825475]$ |
$0$ |
$[2]$ |
3366.d2 |
3366c2
|
3366.d |
3366c
|
$[1, -1, 0, -3663, -69575]$ |
$0$ |
$[2, 2]$ |
3366.d3 |
3366c1
|
3366.d |
3366c
|
$[1, -1, 0, -3483, -78251]$ |
$0$ |
$[2]$ |
3366.d4 |
3366c4
|
3366.d |
3366c
|
$[1, -1, 0, 7227, -411521]$ |
$0$ |
$[2]$ |
3366.e1 |
3366j3
|
3366.e |
3366j
|
$[1, -1, 0, -12638223, 17296430445]$ |
$1$ |
$[2]$ |
3366.e2 |
3366j2
|
3366.e |
3366j
|
$[1, -1, 0, -789903, 270394605]$ |
$1$ |
$[2, 2]$ |
3366.e3 |
3366j4
|
3366.e |
3366j
|
$[1, -1, 0, -738063, 307377261]$ |
$1$ |
$[2]$ |
3366.e4 |
3366j1
|
3366.e |
3366j
|
$[1, -1, 0, -52623, 3646701]$ |
$1$ |
$[2]$ |
3366.f1 |
3366e3
|
3366.f |
3366e
|
$[1, -1, 0, -149351112, 702560755008]$ |
$1$ |
$[6]$ |
3366.f2 |
3366e4
|
3366.f |
3366e
|
$[1, -1, 0, -149349672, 702574979040]$ |
$1$ |
$[6]$ |
3366.f3 |
3366e1
|
3366.f |
3366e
|
$[1, -1, 0, -1849032, 958443840]$ |
$1$ |
$[2]$ |
3366.f4 |
3366e2
|
3366.f |
3366e
|
$[1, -1, 0, -374472, 2443915584]$ |
$1$ |
$[2]$ |
3366.g1 |
3366d1
|
3366.g |
3366d
|
$[1, -1, 0, -1782, -28512]$ |
$1$ |
$[2]$ |
3366.g2 |
3366d2
|
3366.g |
3366d
|
$[1, -1, 0, -1692, -31590]$ |
$1$ |
$[2]$ |
3366.h1 |
3366a2
|
3366.h |
3366a
|
$[1, -1, 0, -4902, 133334]$ |
$1$ |
$[2]$ |
3366.h2 |
3366a1
|
3366.h |
3366a
|
$[1, -1, 0, -312, 2060]$ |
$1$ |
$[2]$ |
3366.i1 |
3366k1
|
3366.i |
3366k
|
$[1, -1, 0, -8136, -278208]$ |
$0$ |
$[2]$ |
3366.i2 |
3366k2
|
3366.i |
3366k
|
$[1, -1, 0, -2376, -668736]$ |
$0$ |
$[2]$ |
3366.j1 |
3366f1
|
3366.j |
3366f
|
$[1, -1, 0, -81, 157]$ |
$1$ |
$[2]$ |
3366.j2 |
3366f2
|
3366.j |
3366f
|
$[1, -1, 0, 279, 949]$ |
$1$ |
$[2]$ |
3366.k1 |
3366h5
|
3366.k |
3366h
|
$[1, -1, 0, -3554496, 2580267820]$ |
$1$ |
$[2]$ |
3366.k2 |
3366h3
|
3366.k |
3366h
|
$[1, -1, 0, -222156, 40358272]$ |
$1$ |
$[2, 2]$ |
3366.k3 |
3366h6
|
3366.k |
3366h
|
$[1, -1, 0, -219096, 41521684]$ |
$1$ |
$[2]$ |
3366.k4 |
3366h2
|
3366.k |
3366h
|
$[1, -1, 0, -14076, 614992]$ |
$1$ |
$[2, 2]$ |
3366.k5 |
3366h1
|
3366.k |
3366h
|
$[1, -1, 0, -2556, -37040]$ |
$1$ |
$[2]$ |
3366.k6 |
3366h4
|
3366.k |
3366h
|
$[1, -1, 0, 9684, 2463520]$ |
$1$ |
$[2]$ |
3366.l1 |
3366q2
|
3366.l |
3366q
|
$[1, -1, 1, -26861, 1696821]$ |
$1$ |
$[2]$ |
3366.l2 |
3366q1
|
3366.l |
3366q
|
$[1, -1, 1, -2381, 2805]$ |
$1$ |
$[2]$ |
3366.m1 |
3366o3
|
3366.m |
3366o
|
$[1, -1, 1, -4355456, -3497469033]$ |
$0$ |
$[2]$ |
3366.m2 |
3366o2
|
3366.m |
3366o
|
$[1, -1, 1, -282596, -50200329]$ |
$0$ |
$[2, 2]$ |
3366.m3 |
3366o1
|
3366.m |
3366o
|
$[1, -1, 1, -74516, 7063287]$ |
$0$ |
$[4]$ |
3366.m4 |
3366o4
|
3366.m |
3366o
|
$[1, -1, 1, 460984, -270300009]$ |
$0$ |
$[2]$ |
3366.n1 |
3366p1
|
3366.n |
3366p
|
$[1, -1, 1, -290, 289]$ |
$1$ |
$[2]$ |
3366.n2 |
3366p2
|
3366.n |
3366p
|
$[1, -1, 1, 1150, 1441]$ |
$1$ |
$[2]$ |
3366.o1 |
3366l2
|
3366.o |
3366l
|
$[1, -1, 1, -545, -4757]$ |
$0$ |
$[2]$ |
3366.o2 |
3366l1
|
3366.o |
3366l
|
$[1, -1, 1, -35, -65]$ |
$0$ |
$[2]$ |
3366.p1 |
3366n2
|
3366.p |
3366n
|
$[1, -1, 1, -11039, 260543]$ |
$0$ |
$[2]$ |
3366.p2 |
3366n1
|
3366.p |
3366n
|
$[1, -1, 1, -4919, -128689]$ |
$0$ |
$[2]$ |
3366.q1 |
3366m3
|
3366.q |
3366m
|
$[1, -1, 1, -14276759, -20759547369]$ |
$0$ |
$[2]$ |
3366.q2 |
3366m2
|
3366.q |
3366m
|
$[1, -1, 1, -892319, -324184377]$ |
$0$ |
$[2, 2]$ |
3366.q3 |
3366m4
|
3366.q |
3366m
|
$[1, -1, 1, -824999, -375212937]$ |
$0$ |
$[2]$ |
3366.q4 |
3366m1
|
3366.q |
3366m
|
$[1, -1, 1, -59999, -4240569]$ |
$0$ |
$[4]$ |