Show commands: SageMath
Rank
The elliptic curves in class 3366j have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 3366j do not have complex multiplication.Modular form 3366.2.a.j
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3366j
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3366.e4 | 3366j1 | \([1, -1, 0, -52623, 3646701]\) | \(22106889268753393/4969545596928\) | \(3622798740160512\) | \([2]\) | \(21504\) | \(1.6984\) | \(\Gamma_0(N)\)-optimal |
3366.e2 | 3366j2 | \([1, -1, 0, -789903, 270394605]\) | \(74768347616680342513/5615307472896\) | \(4093559147741184\) | \([2, 2]\) | \(43008\) | \(2.0450\) | |
3366.e1 | 3366j3 | \([1, -1, 0, -12638223, 17296430445]\) | \(306234591284035366263793/1727485056\) | \(1259336605824\) | \([2]\) | \(86016\) | \(2.3916\) | |
3366.e3 | 3366j4 | \([1, -1, 0, -738063, 307377261]\) | \(-60992553706117024753/20624795251201152\) | \(-15035475738125639808\) | \([2]\) | \(86016\) | \(2.3916\) |