Properties

Label 3366j
Number of curves $4$
Conductor $3366$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3366j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3366j do not have complex multiplication.

Modular form 3366.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} + 4 q^{7} - q^{8} + 2 q^{10} + q^{11} - 2 q^{13} - 4 q^{14} + q^{16} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 3366j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3366.e4 3366j1 \([1, -1, 0, -52623, 3646701]\) \(22106889268753393/4969545596928\) \(3622798740160512\) \([2]\) \(21504\) \(1.6984\) \(\Gamma_0(N)\)-optimal
3366.e2 3366j2 \([1, -1, 0, -789903, 270394605]\) \(74768347616680342513/5615307472896\) \(4093559147741184\) \([2, 2]\) \(43008\) \(2.0450\)  
3366.e1 3366j3 \([1, -1, 0, -12638223, 17296430445]\) \(306234591284035366263793/1727485056\) \(1259336605824\) \([2]\) \(86016\) \(2.3916\)  
3366.e3 3366j4 \([1, -1, 0, -738063, 307377261]\) \(-60992553706117024753/20624795251201152\) \(-15035475738125639808\) \([2]\) \(86016\) \(2.3916\)