Properties

Label 3366.m
Number of curves $4$
Conductor $3366$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3366.m have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3366.m do not have complex multiplication.

Modular form 3366.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + 4 q^{7} + q^{8} - 2 q^{10} - q^{11} + 6 q^{13} + 4 q^{14} + q^{16} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3366.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3366.m1 3366o3 \([1, -1, 1, -4355456, -3497469033]\) \(12534210458299016895673/315581882565708\) \(230059192390401132\) \([2]\) \(122880\) \(2.4396\)  
3366.m2 3366o2 \([1, -1, 1, -282596, -50200329]\) \(3423676911662954233/483711578981136\) \(352625741077248144\) \([2, 2]\) \(61440\) \(2.0930\)  
3366.m3 3366o1 \([1, -1, 1, -74516, 7063287]\) \(62768149033310713/6915442583808\) \(5041357643596032\) \([4]\) \(30720\) \(1.7464\) \(\Gamma_0(N)\)-optimal
3366.m4 3366o4 \([1, -1, 1, 460984, -270300009]\) \(14861225463775641287/51859390496937804\) \(-37805495672267659116\) \([2]\) \(122880\) \(2.4396\)