Properties

Label 336336.fi
Number of curves $2$
Conductor $336336$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 336336.fi have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 336336.fi do not have complex multiplication.

Modular form 336336.2.a.fi

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} - q^{11} + q^{13} - 2 q^{15} + 8 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 336336.fi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
336336.fi1 336336fi2 \([0, 1, 0, -5779664, -5343674988]\) \(44308125149913793/61165323648\) \(29474976406993108992\) \([2]\) \(13934592\) \(2.6402\)  
336336.fi2 336336fi1 \([0, 1, 0, -260304, -131191404]\) \(-4047806261953/13066420224\) \(-6296581213935108096\) \([2]\) \(6967296\) \(2.2936\) \(\Gamma_0(N)\)-optimal