Properties

Label 336336.de
Number of curves $1$
Conductor $336336$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("de1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 336336.de1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 336336.de do not have complex multiplication.

Modular form 336336.2.a.de

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - q^{11} + q^{13} - q^{15} + 4 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 336336.de

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
336336.de1 336336de1 \([0, -1, 0, -36080, 2785728]\) \(-10779215329/658944\) \(-317538724478976\) \([]\) \(1140480\) \(1.5373\) \(\Gamma_0(N)\)-optimal