Show commands: SageMath
Rank
The elliptic curves in class 33600gs have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 33600gs do not have complex multiplication.Modular form 33600.2.a.gs
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 33600gs
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 33600.hj3 | 33600gs1 | \([0, 1, 0, -132508, 17266238]\) | \(257307998572864/19456203375\) | \(19456203375000000\) | \([2]\) | \(221184\) | \(1.8707\) | \(\Gamma_0(N)\)-optimal |
| 33600.hj2 | 33600gs2 | \([0, 1, 0, -432633, -89278137]\) | \(139927692143296/27348890625\) | \(1750329000000000000\) | \([2, 2]\) | \(442368\) | \(2.2173\) | |
| 33600.hj4 | 33600gs3 | \([0, 1, 0, 890367, -527191137]\) | \(152461584507448/322998046875\) | \(-165375000000000000000\) | \([2]\) | \(884736\) | \(2.5639\) | |
| 33600.hj1 | 33600gs4 | \([0, 1, 0, -6557633, -6465403137]\) | \(60910917333827912/3255076125\) | \(1666598976000000000\) | \([2]\) | \(884736\) | \(2.5639\) |