Properties

Label 33600.g
Number of curves $4$
Conductor $33600$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 33600.g have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33600.g do not have complex multiplication.

Modular form 33600.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} - 4 q^{11} - 6 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 33600.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33600.g1 33600er4 \([0, -1, 0, -22433, 1300737]\) \(2438569736/21\) \(10752000000\) \([2]\) \(65536\) \(1.0927\)  
33600.g2 33600er2 \([0, -1, 0, -1433, 19737]\) \(5088448/441\) \(28224000000\) \([2, 2]\) \(32768\) \(0.74609\)  
33600.g3 33600er1 \([0, -1, 0, -308, -1638]\) \(3241792/567\) \(567000000\) \([2]\) \(16384\) \(0.39951\) \(\Gamma_0(N)\)-optimal
33600.g4 33600er3 \([0, -1, 0, 1567, 88737]\) \(830584/7203\) \(-3687936000000\) \([2]\) \(65536\) \(1.0927\)