Properties

Label 33600.be
Number of curves $4$
Conductor $33600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 33600.be have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33600.be do not have complex multiplication.

Modular form 33600.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} - 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 33600.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33600.be1 33600b4 \([0, -1, 0, -373633, -87780863]\) \(5633270409316/14175\) \(14515200000000\) \([2]\) \(196608\) \(1.7638\)  
33600.be2 33600b3 \([0, -1, 0, -65633, 4759137]\) \(30534944836/8203125\) \(8400000000000000\) \([2]\) \(196608\) \(1.7638\)  
33600.be3 33600b2 \([0, -1, 0, -23633, -1330863]\) \(5702413264/275625\) \(70560000000000\) \([2, 2]\) \(98304\) \(1.4172\)  
33600.be4 33600b1 \([0, -1, 0, 867, -81363]\) \(4499456/180075\) \(-2881200000000\) \([2]\) \(49152\) \(1.0706\) \(\Gamma_0(N)\)-optimal