Properties

Label 33600.gv
Number of curves $1$
Conductor $33600$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 33600.gv1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33600.gv do not have complex multiplication.

Modular form 33600.2.a.gv

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{7} + q^{9} + 2 q^{11} - q^{13} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 33600.gv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33600.gv1 33600hf1 \([0, 1, 0, -48833, 4934463]\) \(-125768785/30618\) \(-3135283200000000\) \([]\) \(161280\) \(1.6919\) \(\Gamma_0(N)\)-optimal