Properties

Label 33462z
Number of curves $1$
Conductor $33462$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 33462z1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33462z do not have complex multiplication.

Modular form 33462.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - q^{7} - q^{8} - q^{10} - q^{11} + q^{14} + q^{16} + 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 33462z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33462.ba1 33462z1 \([1, -1, 0, -5004, -175824]\) \(-8653002877/3449952\) \(-5525487972576\) \([]\) \(46080\) \(1.1539\) \(\Gamma_0(N)\)-optimal