Show commands: SageMath
Rank
The elliptic curves in class 333c have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 333c do not have complex multiplication.Modular form 333.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 333c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 333.a2 | 333c1 | \([1, -1, 1, 1, -2]\) | \(9261/37\) | \(-999\) | \([2]\) | \(16\) | \(-0.74175\) | \(\Gamma_0(N)\)-optimal |
| 333.a1 | 333c2 | \([1, -1, 1, -14, -14]\) | \(10503459/1369\) | \(36963\) | \([2]\) | \(32\) | \(-0.39517\) |