Properties

Label 333200dg
Number of curves $2$
Conductor $333200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 333200dg have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 333200dg do not have complex multiplication.

Modular form 333200.2.a.dg

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{9} - 2 q^{11} + q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 333200dg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
333200.dg2 333200dg1 \([0, 0, 0, -2845675, -8273931750]\) \(-338463151209/3731840000\) \(-28099023626240000000000\) \([2]\) \(13271040\) \(2.9895\) \(\Gamma_0(N)\)-optimal
333200.dg1 333200dg2 \([0, 0, 0, -81245675, -281027531750]\) \(7876916680687209/27200448800\) \(204806758455756800000000\) \([2]\) \(26542080\) \(3.3361\)