Properties

Label 333200.eh
Number of curves $4$
Conductor $333200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 333200.eh have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 333200.eh do not have complex multiplication.

Modular form 333200.2.a.eh

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{9} + 4 q^{11} + 2 q^{13} + q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 333200.eh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
333200.eh1 333200eh3 \([0, 0, 0, -27068534675, 1714135830279250]\) \(291306206119284545407569/101150000000\) \(761612566400000000000000\) \([2]\) \(297271296\) \(4.3760\)  
333200.eh2 333200eh4 \([0, 0, 0, -2005622675, 16157235463250]\) \(118495863754334673489/53596139570691200\) \(403554062358543935283200000000\) \([2]\) \(297271296\) \(4.3760\)  
333200.eh3 333200eh2 \([0, 0, 0, -1692022675, 26775417863250]\) \(71149857462630609489/41907496960000\) \(315544007030210560000000000\) \([2, 2]\) \(148635648\) \(4.0294\)  
333200.eh4 333200eh1 \([0, 0, 0, -86390675, 576320519250]\) \(-9470133471933009/13576123187200\) \(-102221908278457139200000000\) \([2]\) \(74317824\) \(3.6829\) \(\Gamma_0(N)\)-optimal