Properties

Label 331200.bp
Number of curves $4$
Conductor $331200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 331200.bp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 331200.bp do not have complex multiplication.

Modular form 331200.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} + 4 q^{11} - 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 331200.bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
331200.bp1 331200bp3 \([0, 0, 0, -677100, 181474000]\) \(45989074372/7555707\) \(5640305052672000000\) \([2]\) \(6291456\) \(2.3197\)  
331200.bp2 331200bp2 \([0, 0, 0, -191100, -29450000]\) \(4135597648/385641\) \(71969865984000000\) \([2, 2]\) \(3145728\) \(1.9731\)  
331200.bp3 331200bp1 \([0, 0, 0, -186600, -31025000]\) \(61604313088/621\) \(7243344000000\) \([2]\) \(1572864\) \(1.6265\) \(\Gamma_0(N)\)-optimal
331200.bp4 331200bp4 \([0, 0, 0, 222900, -139574000]\) \(1640689628/12223143\) \(-9124527356928000000\) \([2]\) \(6291456\) \(2.3197\)