Properties

Label 3300o
Number of curves $2$
Conductor $3300$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3300o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3300o do not have complex multiplication.

Modular form 3300.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - q^{11} - 4 q^{13} + 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 3300o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3300.m1 3300o1 \([0, 1, 0, -137708, 19623588]\) \(-2888047810000/35937\) \(-3593700000000\) \([3]\) \(12960\) \(1.5563\) \(\Gamma_0(N)\)-optimal
3300.m2 3300o2 \([0, 1, 0, -62708, 40893588]\) \(-272709010000/7073843073\) \(-707384307300000000\) \([]\) \(38880\) \(2.1056\)