Properties

Label 327990.d
Number of curves $4$
Conductor $327990$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 327990.d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(13\)\(1 - T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 327990.d do not have complex multiplication.

Modular form 327990.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + 2 q^{7} - q^{8} + q^{9} + q^{10} - q^{12} + q^{13} - 2 q^{14} + q^{15} + q^{16} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 327990.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327990.d1 327990d4 \([1, 1, 0, -1005853, -368944997]\) \(189208196468929/10860320250\) \(6459971758228550250\) \([2]\) \(7257600\) \(2.3635\)  
327990.d2 327990d2 \([1, 1, 0, -173263, 27564637]\) \(967068262369/4928040\) \(2931313118820840\) \([2]\) \(2419200\) \(1.8142\)  
327990.d3 327990d1 \([1, 1, 0, -5063, 888117]\) \(-24137569/561600\) \(-334052777073600\) \([2]\) \(1209600\) \(1.4676\) \(\Gamma_0(N)\)-optimal
327990.d4 327990d3 \([1, 1, 0, 45397, -23504247]\) \(17394111071/411937500\) \(-245030031794437500\) \([2]\) \(3628800\) \(2.0169\)