Learn more

Refine search


Results (1-50 of 95 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
327990.a1 327990.a \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -51318, -15872172]$ \(y^2+xy=x^3+x^2-51318x-15872172\)
327990.b1 327990.b \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z$ $20.17205672$ $[1, 1, 0, -54430378, -154569469772]$ \(y^2+xy=x^3+x^2-54430378x-154569469772\)
327990.b2 327990.b \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z$ $20.17205672$ $[1, 1, 0, -21866858, 37791101172]$ \(y^2+xy=x^3+x^2-21866858x+37791101172\)
327990.b3 327990.b \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $10.08602836$ $[1, 1, 0, -3701258, -1966130988]$ \(y^2+xy=x^3+x^2-3701258x-1966130988\)
327990.b4 327990.b \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z$ $20.17205672$ $[1, 1, 0, 604662, -201564972]$ \(y^2+xy=x^3+x^2+604662x-201564972\)
327990.c1 327990.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $2.254707092$ $[1, 1, 0, -22325203, -30893717843]$ \(y^2+xy=x^3+x^2-22325203x-30893717843\)
327990.d1 327990.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1005853, -368944997]$ \(y^2+xy=x^3+x^2-1005853x-368944997\)
327990.d2 327990.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -173263, 27564637]$ \(y^2+xy=x^3+x^2-173263x+27564637\)
327990.d3 327990.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -5063, 888117]$ \(y^2+xy=x^3+x^2-5063x+888117\)
327990.d4 327990.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 45397, -23504247]$ \(y^2+xy=x^3+x^2+45397x-23504247\)
327990.e1 327990.e \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $0.847929086$ $[1, 1, 0, -52512057, 145819348389]$ \(y^2+xy=x^3+x^2-52512057x+145819348389\)
327990.f1 327990.f \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 735858, -382549854]$ \(y^2+xy=x^3+x^2+735858x-382549854\)
327990.g1 327990.g \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3512516412, -80127862879464]$ \(y^2+xy=x^3+x^2-3512516412x-80127862879464\)
327990.g2 327990.g \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -220001412, -1246447012464]$ \(y^2+xy=x^3+x^2-220001412x-1246447012464\)
327990.g3 327990.g \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -66502092, -2953451550456]$ \(y^2+xy=x^3+x^2-66502092x-2953451550456\)
327990.g4 327990.g \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -23812932, 12808365264]$ \(y^2+xy=x^3+x^2-23812932x+12808365264\)
327990.h1 327990.h \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -2514607, -1535136149]$ \(y^2+xy=x^3+x^2-2514607x-1535136149\)
327990.i1 327990.i \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -128052, 17611344]$ \(y^2+xy=x^3+x^2-128052x+17611344\)
327990.j1 327990.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1602122, -762195756]$ \(y^2+xy=x^3+x^2-1602122x-762195756\)
327990.j2 327990.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 348998, -2497521884]$ \(y^2+xy=x^3+x^2+348998x-2497521884\)
327990.k1 327990.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $0.431066295$ $[1, 1, 0, -7557, -164061]$ \(y^2+xy=x^3+x^2-7557x-164061\)
327990.l1 327990.l \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3343834, -2119930228]$ \(y^2+xy+y=x^3-3343834x-2119930228\)
327990.l2 327990.l \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 4460646, -10542525044]$ \(y^2+xy+y=x^3+4460646x-10542525044\)
327990.m1 327990.m \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -38704, -2628628]$ \(y^2+xy+y=x^3-38704x-2628628\)
327990.m2 327990.m \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 3346, -206548]$ \(y^2+xy+y=x^3+3346x-206548\)
327990.n1 327990.n \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z$ $10.27025000$ $[1, 0, 1, -8150149, -2926210384]$ \(y^2+xy+y=x^3-8150149x-2926210384\)
327990.n2 327990.n \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z$ $5.135125004$ $[1, 0, 1, 30603131, -22721385808]$ \(y^2+xy+y=x^3+30603131x-22721385808\)
327990.o1 327990.o \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -63934, 7009232]$ \(y^2+xy+y=x^3-63934x+7009232\)
327990.o2 327990.o \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 428051, -25264984]$ \(y^2+xy+y=x^3+428051x-25264984\)
327990.p1 327990.p \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3554684153, 81569971645598]$ \(y^2+xy+y=x^3-3554684153x+81569971645598\)
327990.p2 327990.p \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1117886653, -13346698711402]$ \(y^2+xy+y=x^3-1117886653x-13346698711402\)
327990.p3 327990.p \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -233785403, 1133818842098]$ \(y^2+xy+y=x^3-233785403x+1133818842098\)
327990.p4 327990.p \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 29027097, 103278467098]$ \(y^2+xy+y=x^3+29027097x+103278467098\)
327990.q1 327990.q \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -3614059163928, 2644354988241292006]$ \(y^2+xy+y=x^3-3614059163928x+2644354988241292006\)
327990.r1 327990.r \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -7581633, -8035747934]$ \(y^2+xy+y=x^3-7581633x-8035747934\)
327990.r2 327990.r \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -710663, 230350238]$ \(y^2+xy+y=x^3-710663x+230350238\)
327990.r3 327990.r \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -475183, -124847794]$ \(y^2+xy+y=x^3-475183x-124847794\)
327990.r4 327990.r \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -96733, -318160054]$ \(y^2+xy+y=x^3-96733x-318160054\)
327990.r5 327990.r \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -54683, 1806806]$ \(y^2+xy+y=x^3-54683x+1806806\)
327990.r6 327990.r \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 12597, 218998]$ \(y^2+xy+y=x^3+12597x+218998\)
327990.s1 327990.s \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1054105213, -13172755194412]$ \(y^2+xy+y=x^3-1054105213x-13172755194412\)
327990.s2 327990.s \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -66350713, -202748405812]$ \(y^2+xy+y=x^3-66350713x-202748405812\)
327990.s3 327990.s \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -9768233, 7263126956]$ \(y^2+xy+y=x^3-9768233x+7263126956\)
327990.s4 327990.s \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -8691753, 9860027308]$ \(y^2+xy+y=x^3-8691753x+9860027308\)
327990.s5 327990.s \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, 16084107, -673253384444]$ \(y^2+xy+y=x^3+16084107x-673253384444\)
327990.s6 327990.s \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 29590567, 51077343116]$ \(y^2+xy+y=x^3+29590567x+51077343116\)
327990.t1 327990.t \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -18, -242]$ \(y^2+xy+y=x^3-18x-242\)
327990.u1 327990.u \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 5777652, -4714773494]$ \(y^2+xy+y=x^3+5777652x-4714773494\)
327990.v1 327990.v \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -23001368, -91116025342]$ \(y^2+xy+y=x^3-23001368x-91116025342\)
327990.w1 327990.w \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z$ $11.41885987$ $[1, 1, 1, -3566213001, 77151666786999]$ \(y^2+xy+y=x^3+x^2-3566213001x+77151666786999\)
Next   Download to