Show commands: SageMath
Rank
The elliptic curves in class 327600.fp have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 327600.fp do not have complex multiplication.Modular form 327600.2.a.fp
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 327600.fp
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 327600.fp1 | 327600fp3 | \([0, 0, 0, -567844428675, 164699456938789250]\) | \(434014578033107719741685694649/103121648659575000\) | \(4811243639861131200000000000\) | \([2]\) | \(2123366400\) | \(5.1303\) | |
| 327600.fp2 | 327600fp2 | \([0, 0, 0, -35494428675, 2572796788789250]\) | \(105997782562506306791694649/51649016225625000000\) | \(2409736501022760000000000000000\) | \([2, 2]\) | \(1061683200\) | \(4.7837\) | |
| 327600.fp3 | 327600fp4 | \([0, 0, 0, -29580780675, 3458205908293250]\) | \(-61354313914516350666047929/75227254486083984375000\) | \(-3509802785302734375000000000000000\) | \([2]\) | \(2123366400\) | \(5.1303\) | |
| 327600.fp4 | 327600fp1 | \([0, 0, 0, -2592156675, 25733206453250]\) | \(41285728533151645510969/17760741842188800000\) | \(828645171389160652800000000000\) | \([2]\) | \(530841600\) | \(4.4372\) | \(\Gamma_0(N)\)-optimal |