Properties

Label 327184.ej
Number of curves $2$
Conductor $327184$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ej1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 327184.ej have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 327184.ej do not have complex multiplication.

Modular form 327184.2.a.ej

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + 3 q^{5} + 2 q^{7} + q^{9} + 6 q^{15} + 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 327184.ej

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327184.ej1 327184ej2 \([0, -1, 0, -17020384, 27766361856]\) \(-128667913/4096\) \(-17358871610420535230464\) \([]\) \(26002944\) \(3.0434\)  
327184.ej2 327184ej1 \([0, -1, 0, 974736, 140253632]\) \(24167/16\) \(-67808092228205215744\) \([]\) \(8667648\) \(2.4941\) \(\Gamma_0(N)\)-optimal