Show commands:
SageMath
E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 3234.m
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3234.m1 | 3234m2 | \([1, 0, 1, -3541011, -2565008834]\) | \(121681065322255375/12702096\) | \(512575390060272\) | \([2]\) | \(57344\) | \(2.2515\) | |
3234.m2 | 3234m1 | \([1, 0, 1, -220771, -40298338]\) | \(-29489309167375/303595776\) | \(-12251184631564032\) | \([2]\) | \(28672\) | \(1.9049\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3234.m have rank \(0\).
Complex multiplication
The elliptic curves in class 3234.m do not have complex multiplication.Modular form 3234.2.a.m
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.