Learn more

Refine search


Results (1-50 of 54 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
3234.a1 3234.a \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -4869, -137619]$ \(y^2+xy=x^3+x^2-4869x-137619\) 264.2.0.?
3234.b1 3234.b \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -22159540, -39589128368]$ \(y^2+xy=x^3+x^2-22159540x-39589128368\) 2.3.0.a.1, 28.6.0.c.1, 88.6.0.?, 616.12.0.?
3234.b2 3234.b \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -82100, -1735149744]$ \(y^2+xy=x^3+x^2-82100x-1735149744\) 2.3.0.a.1, 14.6.0.b.1, 88.6.0.?, 616.12.0.?
3234.c1 3234.c \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $2.548421690$ $[1, 1, 0, -13255, 1632373]$ \(y^2+xy=x^3+x^2-13255x+1632373\) 132.2.0.?
3234.d1 3234.d \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3945, 93381]$ \(y^2+xy=x^3+x^2-3945x+93381\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 21.8.0-3.a.1.2, $\ldots$
3234.d2 3234.d \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1985, 188637]$ \(y^2+xy=x^3+x^2-1985x+188637\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 21.8.0-3.a.1.2, $\ldots$
3234.d3 3234.d \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -270, -1728]$ \(y^2+xy=x^3+x^2-270x-1728\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 21.8.0-3.a.1.1, $\ldots$
3234.d4 3234.d \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 220, -6726]$ \(y^2+xy=x^3+x^2+220x-6726\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 21.8.0-3.a.1.1, $\ldots$
3234.e1 3234.e \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.508796817$ $[1, 1, 0, -72265, 7447189]$ \(y^2+xy=x^3+x^2-72265x+7447189\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 28.12.0.l.1, 56.24.0.cb.1, $\ldots$
3234.e2 3234.e \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.254398408$ $[1, 1, 0, -4505, 115557]$ \(y^2+xy=x^3+x^2-4505x+115557\) 2.3.0.a.1, 4.12.0.f.1, 14.6.0.b.1, 28.24.0.g.1, 88.24.0.?, $\ldots$
3234.f1 3234.f \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.587189937$ $[1, 1, 0, -5835, 169149]$ \(y^2+xy=x^3+x^2-5835x+169149\) 3.4.0.a.1, 21.8.0-3.a.1.2, 132.8.0.?, 924.16.0.?
3234.f2 3234.f \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.195729979$ $[1, 1, 0, -60, 288]$ \(y^2+xy=x^3+x^2-60x+288\) 3.4.0.a.1, 21.8.0-3.a.1.1, 132.8.0.?, 924.16.0.?
3234.g1 3234.g \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -11, -27]$ \(y^2+xy=x^3+x^2-11x-27\) 3.4.0.a.1, 21.8.0-3.a.1.1, 264.8.0.?, 1848.16.0.?
3234.g2 3234.g \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 94, 372]$ \(y^2+xy=x^3+x^2+94x+372\) 3.4.0.a.1, 21.8.0-3.a.1.2, 264.8.0.?, 1848.16.0.?
3234.h1 3234.h \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -565, 7592]$ \(y^2+xy+y=x^3-565x+7592\) 3.8.0-3.a.1.2, 264.16.0.?
3234.h2 3234.h \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 4580, -113830]$ \(y^2+xy+y=x^3+4580x-113830\) 3.8.0-3.a.1.1, 264.16.0.?
3234.i1 3234.i \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -4508222, -3684683824]$ \(y^2+xy+y=x^3-4508222x-3684683824\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.bb.1, 56.12.0-4.c.1.1, 88.12.0.?, $\ldots$
3234.i2 3234.i \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -282462, -57291440]$ \(y^2+xy+y=x^3-282462x-57291440\) 2.6.0.a.1, 24.12.0.a.1, 56.12.0-2.a.1.1, 84.12.0.?, 88.12.0.?, $\ldots$
3234.i3 3234.i \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -70782, -141116720]$ \(y^2+xy+y=x^3-70782x-141116720\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.v.1, 56.12.0-4.c.1.2, 84.12.0.?, $\ldots$
3234.i4 3234.i \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -31582, 712016]$ \(y^2+xy+y=x^3-31582x+712016\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.bb.1, 56.12.0-4.c.1.4, 66.6.0.a.1, $\ldots$
3234.j1 3234.j \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.555776645$ $[1, 0, 1, -271, -4798]$ \(y^2+xy+y=x^3-271x-4798\) 132.2.0.?
3234.k1 3234.k \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.433881820$ $[1, 0, 1, -5171, 135776]$ \(y^2+xy+y=x^3-5171x+135776\) 2.3.0.a.1, 28.6.0.c.1, 88.6.0.?, 616.12.0.?
3234.k2 3234.k \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.216940910$ $[1, 0, 1, 219, 8572]$ \(y^2+xy+y=x^3+219x+8572\) 2.3.0.a.1, 14.6.0.b.1, 88.6.0.?, 616.12.0.?
3234.l1 3234.l \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $4.890172615$ $[1, 0, 1, -285941, -58875904]$ \(y^2+xy+y=x^3-285941x-58875904\) 3.8.0-3.a.1.1, 132.16.0.?
3234.l2 3234.l \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/3\Z$ $1.630057538$ $[1, 0, 1, -2966, -107656]$ \(y^2+xy+y=x^3-2966x-107656\) 3.8.0-3.a.1.2, 132.16.0.?
3234.m1 3234.m \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3541011, -2565008834]$ \(y^2+xy+y=x^3-3541011x-2565008834\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 28.12.0.l.1, 56.24.0.cb.1, $\ldots$
3234.m2 3234.m \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -220771, -40298338]$ \(y^2+xy+y=x^3-220771x-40298338\) 2.3.0.a.1, 4.12.0.f.1, 14.6.0.b.1, 28.24.0.g.1, 88.24.0.?, $\ldots$
3234.n1 3234.n \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -11100, 448984]$ \(y^2+xy+y=x^3-11100x+448984\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0-4.c.1.2, 88.12.0.?, $\ldots$
3234.n2 3234.n \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -6200, -185272]$ \(y^2+xy+y=x^3-6200x-185272\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 56.12.0-4.c.1.1, 88.12.0.?, $\ldots$
3234.n3 3234.n \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -810, 4456]$ \(y^2+xy+y=x^3-810x+4456\) 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.1, 88.12.0.?, 168.24.0.?, $\ldots$
3234.n4 3234.n \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 170, 536]$ \(y^2+xy+y=x^3+170x+536\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.4, 88.12.0.?, $\ldots$
3234.o1 3234.o \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -238607, 46487522]$ \(y^2+xy+y=x^3-238607x+46487522\) 264.2.0.?
3234.p1 3234.p \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1972104, -1066786449]$ \(y^2+xy+y=x^3+x^2-1972104x-1066786449\) 2.3.0.a.1, 4.12.0-4.c.1.2, 56.24.0-56.z.1.12, 88.24.0.?, 616.48.0.?
3234.p2 3234.p \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -171844, -2403745]$ \(y^2+xy+y=x^3+x^2-171844x-2403745\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 28.12.0-4.c.1.1, 56.24.0-56.z.1.10, $\ldots$
3234.p3 3234.p \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -123334, -16685089]$ \(y^2+xy+y=x^3+x^2-123334x-16685089\) 2.6.0.a.1, 4.12.0-2.a.1.1, 28.24.0-28.b.1.1, 88.24.0.?, 616.48.0.?
3234.p4 3234.p \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -4754, -463345]$ \(y^2+xy+y=x^3+x^2-4754x-463345\) 2.3.0.a.1, 4.12.0-4.c.1.1, 14.6.0.b.1, 28.24.0-28.g.1.2, 88.24.0.?, $\ldots$
3234.q1 3234.q \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $4.948737973$ $[1, 1, 1, -692518, 221512829]$ \(y^2+xy+y=x^3+x^2-692518x+221512829\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 21.8.0-3.a.1.2, $\ldots$
3234.q2 3234.q \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $2.474368986$ $[1, 1, 1, -40328, 3942245]$ \(y^2+xy+y=x^3+x^2-40328x+3942245\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 14.6.0.b.1, 21.8.0-3.a.1.2, $\ldots$
3234.q3 3234.q \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.649579324$ $[1, 1, 1, -17788, -465403]$ \(y^2+xy+y=x^3+x^2-17788x-465403\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 21.8.0-3.a.1.1, $\ldots$
3234.q4 3234.q \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.824789662$ $[1, 1, 1, 3772, -51451]$ \(y^2+xy+y=x^3+x^2+3772x-51451\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 14.6.0.b.1, 21.8.0-3.a.1.1, $\ldots$
3234.r1 3234.r \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -2570492, -1587302179]$ \(y^2+xy+y=x^3+x^2-2570492x-1587302179\) 2.3.0.a.1, 28.6.0.c.1, 88.6.0.?, 616.12.0.?
3234.r2 3234.r \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -155772, -26427171]$ \(y^2+xy+y=x^3+x^2-155772x-26427171\) 2.3.0.a.1, 14.6.0.b.1, 88.6.0.?, 616.12.0.?
3234.s1 3234.s \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -493186, 133104971]$ \(y^2+xy+y=x^3+x^2-493186x+133104971\) 2.3.0.a.1, 5.12.0.a.2, 8.6.0.d.1, 10.36.0.a.1, 35.24.0-5.a.2.2, $\ldots$
3234.s2 3234.s \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -492696, 133383291]$ \(y^2+xy+y=x^3+x^2-492696x+133383291\) 2.3.0.a.1, 5.12.0.a.2, 8.6.0.a.1, 10.36.0.a.1, 35.24.0-5.a.2.2, $\ldots$
3234.s3 3234.s \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -2206, -29989]$ \(y^2+xy+y=x^3+x^2-2206x-29989\) 2.3.0.a.1, 5.12.0.a.1, 8.6.0.d.1, 10.36.0.a.2, 35.24.0-5.a.1.2, $\ldots$
3234.s4 3234.s \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 5634, -186789]$ \(y^2+xy+y=x^3+x^2+5634x-186789\) 2.3.0.a.1, 5.12.0.a.1, 8.6.0.a.1, 10.36.0.a.2, 35.24.0-5.a.1.2, $\ldots$
3234.t1 3234.t \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -17249, 870519]$ \(y^2+xy=x^3-17249x+870519\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 56.24.0-8.m.1.1, 264.24.0.?, $\ldots$
3234.t2 3234.t \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -1079, 13509]$ \(y^2+xy=x^3-1079x+13509\) 2.6.0.a.1, 8.12.0.b.1, 28.12.0-2.a.1.1, 56.24.0-8.b.1.2, 132.12.0.?, $\ldots$
3234.t3 3234.t \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -589, 25955]$ \(y^2+xy=x^3-589x+25955\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 28.12.0-4.c.1.1, 56.24.0-8.d.1.1, $\ldots$
3234.t4 3234.t \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -99, -15]$ \(y^2+xy=x^3-99x-15\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 28.12.0-4.c.1.2, 56.24.0-8.m.1.3, $\ldots$
Next   displayed columns for results