Learn more

Refine search


Results (1-50 of 54 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
3234.a1 3234.a 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 trivial\mathsf{trivial} 11 [1,1,0,4869,137619][1, 1, 0, -4869, -137619] y2+xy=x3+x24869x137619y^2+xy=x^3+x^2-4869x-137619 264.2.0.?
3234.b1 3234.b 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,0,22159540,39589128368][1, 1, 0, -22159540, -39589128368] y2+xy=x3+x222159540x39589128368y^2+xy=x^3+x^2-22159540x-39589128368 2.3.0.a.1, 28.6.0.c.1, 88.6.0.?, 616.12.0.?
3234.b2 3234.b 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,0,82100,1735149744][1, 1, 0, -82100, -1735149744] y2+xy=x3+x282100x1735149744y^2+xy=x^3+x^2-82100x-1735149744 2.3.0.a.1, 14.6.0.b.1, 88.6.0.?, 616.12.0.?
3234.c1 3234.c 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 trivial\mathsf{trivial} 2.5484216902.548421690 [1,1,0,13255,1632373][1, 1, 0, -13255, 1632373] y2+xy=x3+x213255x+1632373y^2+xy=x^3+x^2-13255x+1632373 132.2.0.?
3234.d1 3234.d 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,0,3945,93381][1, 1, 0, -3945, 93381] y2+xy=x3+x23945x+93381y^2+xy=x^3+x^2-3945x+93381 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 21.8.0-3.a.1.2, \ldots
3234.d2 3234.d 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,0,1985,188637][1, 1, 0, -1985, 188637] y2+xy=x3+x21985x+188637y^2+xy=x^3+x^2-1985x+188637 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 21.8.0-3.a.1.2, \ldots
3234.d3 3234.d 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,0,270,1728][1, 1, 0, -270, -1728] y2+xy=x3+x2270x1728y^2+xy=x^3+x^2-270x-1728 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 21.8.0-3.a.1.1, \ldots
3234.d4 3234.d 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,0,220,6726][1, 1, 0, 220, -6726] y2+xy=x3+x2+220x6726y^2+xy=x^3+x^2+220x-6726 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 21.8.0-3.a.1.1, \ldots
3234.e1 3234.e 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/2Z\Z/2\Z 0.5087968170.508796817 [1,1,0,72265,7447189][1, 1, 0, -72265, 7447189] y2+xy=x3+x272265x+7447189y^2+xy=x^3+x^2-72265x+7447189 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 28.12.0.l.1, 56.24.0.cb.1, \ldots
3234.e2 3234.e 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/2Z\Z/2\Z 0.2543984080.254398408 [1,1,0,4505,115557][1, 1, 0, -4505, 115557] y2+xy=x3+x24505x+115557y^2+xy=x^3+x^2-4505x+115557 2.3.0.a.1, 4.12.0.f.1, 14.6.0.b.1, 28.24.0.g.1, 88.24.0.?, \ldots
3234.f1 3234.f 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 trivial\mathsf{trivial} 0.5871899370.587189937 [1,1,0,5835,169149][1, 1, 0, -5835, 169149] y2+xy=x3+x25835x+169149y^2+xy=x^3+x^2-5835x+169149 3.4.0.a.1, 21.8.0-3.a.1.2, 132.8.0.?, 924.16.0.?
3234.f2 3234.f 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 trivial\mathsf{trivial} 0.1957299790.195729979 [1,1,0,60,288][1, 1, 0, -60, 288] y2+xy=x3+x260x+288y^2+xy=x^3+x^2-60x+288 3.4.0.a.1, 21.8.0-3.a.1.1, 132.8.0.?, 924.16.0.?
3234.g1 3234.g 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 trivial\mathsf{trivial} 11 [1,1,0,11,27][1, 1, 0, -11, -27] y2+xy=x3+x211x27y^2+xy=x^3+x^2-11x-27 3.4.0.a.1, 21.8.0-3.a.1.1, 264.8.0.?, 1848.16.0.?
3234.g2 3234.g 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 trivial\mathsf{trivial} 11 [1,1,0,94,372][1, 1, 0, 94, 372] y2+xy=x3+x2+94x+372y^2+xy=x^3+x^2+94x+372 3.4.0.a.1, 21.8.0-3.a.1.2, 264.8.0.?, 1848.16.0.?
3234.h1 3234.h 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/3Z\Z/3\Z 11 [1,0,1,565,7592][1, 0, 1, -565, 7592] y2+xy+y=x3565x+7592y^2+xy+y=x^3-565x+7592 3.8.0-3.a.1.2, 264.16.0.?
3234.h2 3234.h 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 trivial\mathsf{trivial} 11 [1,0,1,4580,113830][1, 0, 1, 4580, -113830] y2+xy+y=x3+4580x113830y^2+xy+y=x^3+4580x-113830 3.8.0-3.a.1.1, 264.16.0.?
3234.i1 3234.i 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,1,4508222,3684683824][1, 0, 1, -4508222, -3684683824] y2+xy+y=x34508222x3684683824y^2+xy+y=x^3-4508222x-3684683824 2.3.0.a.1, 4.6.0.c.1, 24.12.0.bb.1, 56.12.0-4.c.1.1, 88.12.0.?, \ldots
3234.i2 3234.i 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,282462,57291440][1, 0, 1, -282462, -57291440] y2+xy+y=x3282462x57291440y^2+xy+y=x^3-282462x-57291440 2.6.0.a.1, 24.12.0.a.1, 56.12.0-2.a.1.1, 84.12.0.?, 88.12.0.?, \ldots
3234.i3 3234.i 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,1,70782,141116720][1, 0, 1, -70782, -141116720] y2+xy+y=x370782x141116720y^2+xy+y=x^3-70782x-141116720 2.3.0.a.1, 4.6.0.c.1, 24.12.0.v.1, 56.12.0-4.c.1.2, 84.12.0.?, \ldots
3234.i4 3234.i 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,1,31582,712016][1, 0, 1, -31582, 712016] y2+xy+y=x331582x+712016y^2+xy+y=x^3-31582x+712016 2.3.0.a.1, 4.6.0.c.1, 24.12.0.bb.1, 56.12.0-4.c.1.4, 66.6.0.a.1, \ldots
3234.j1 3234.j 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 trivial\mathsf{trivial} 0.5557766450.555776645 [1,0,1,271,4798][1, 0, 1, -271, -4798] y2+xy+y=x3271x4798y^2+xy+y=x^3-271x-4798 132.2.0.?
3234.k1 3234.k 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/2Z\Z/2\Z 0.4338818200.433881820 [1,0,1,5171,135776][1, 0, 1, -5171, 135776] y2+xy+y=x35171x+135776y^2+xy+y=x^3-5171x+135776 2.3.0.a.1, 28.6.0.c.1, 88.6.0.?, 616.12.0.?
3234.k2 3234.k 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/2Z\Z/2\Z 0.2169409100.216940910 [1,0,1,219,8572][1, 0, 1, 219, 8572] y2+xy+y=x3+219x+8572y^2+xy+y=x^3+219x+8572 2.3.0.a.1, 14.6.0.b.1, 88.6.0.?, 616.12.0.?
3234.l1 3234.l 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 trivial\mathsf{trivial} 4.8901726154.890172615 [1,0,1,285941,58875904][1, 0, 1, -285941, -58875904] y2+xy+y=x3285941x58875904y^2+xy+y=x^3-285941x-58875904 3.8.0-3.a.1.1, 132.16.0.?
3234.l2 3234.l 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/3Z\Z/3\Z 1.6300575381.630057538 [1,0,1,2966,107656][1, 0, 1, -2966, -107656] y2+xy+y=x32966x107656y^2+xy+y=x^3-2966x-107656 3.8.0-3.a.1.2, 132.16.0.?
3234.m1 3234.m 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,1,3541011,2565008834][1, 0, 1, -3541011, -2565008834] y2+xy+y=x33541011x2565008834y^2+xy+y=x^3-3541011x-2565008834 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 28.12.0.l.1, 56.24.0.cb.1, \ldots
3234.m2 3234.m 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,1,220771,40298338][1, 0, 1, -220771, -40298338] y2+xy+y=x3220771x40298338y^2+xy+y=x^3-220771x-40298338 2.3.0.a.1, 4.12.0.f.1, 14.6.0.b.1, 28.24.0.g.1, 88.24.0.?, \ldots
3234.n1 3234.n 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,1,11100,448984][1, 0, 1, -11100, 448984] y2+xy+y=x311100x+448984y^2+xy+y=x^3-11100x+448984 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0-4.c.1.2, 88.12.0.?, \ldots
3234.n2 3234.n 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,1,6200,185272][1, 0, 1, -6200, -185272] y2+xy+y=x36200x185272y^2+xy+y=x^3-6200x-185272 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 56.12.0-4.c.1.1, 88.12.0.?, \ldots
3234.n3 3234.n 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,810,4456][1, 0, 1, -810, 4456] y2+xy+y=x3810x+4456y^2+xy+y=x^3-810x+4456 2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0-2.a.1.1, 88.12.0.?, 168.24.0.?, \ldots
3234.n4 3234.n 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,1,170,536][1, 0, 1, 170, 536] y2+xy+y=x3+170x+536y^2+xy+y=x^3+170x+536 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.4, 88.12.0.?, \ldots
3234.o1 3234.o 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 trivial\mathsf{trivial} 11 [1,0,1,238607,46487522][1, 0, 1, -238607, 46487522] y2+xy+y=x3238607x+46487522y^2+xy+y=x^3-238607x+46487522 264.2.0.?
3234.p1 3234.p 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,1,1972104,1066786449][1, 1, 1, -1972104, -1066786449] y2+xy+y=x3+x21972104x1066786449y^2+xy+y=x^3+x^2-1972104x-1066786449 2.3.0.a.1, 4.12.0-4.c.1.2, 56.24.0-56.z.1.12, 88.24.0.?, 616.48.0.?
3234.p2 3234.p 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,1,171844,2403745][1, 1, 1, -171844, -2403745] y2+xy+y=x3+x2171844x2403745y^2+xy+y=x^3+x^2-171844x-2403745 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 28.12.0-4.c.1.1, 56.24.0-56.z.1.10, \ldots
3234.p3 3234.p 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,1,123334,16685089][1, 1, 1, -123334, -16685089] y2+xy+y=x3+x2123334x16685089y^2+xy+y=x^3+x^2-123334x-16685089 2.6.0.a.1, 4.12.0-2.a.1.1, 28.24.0-28.b.1.1, 88.24.0.?, 616.48.0.?
3234.p4 3234.p 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/4Z\Z/4\Z 11 [1,1,1,4754,463345][1, 1, 1, -4754, -463345] y2+xy+y=x3+x24754x463345y^2+xy+y=x^3+x^2-4754x-463345 2.3.0.a.1, 4.12.0-4.c.1.1, 14.6.0.b.1, 28.24.0-28.g.1.2, 88.24.0.?, \ldots
3234.q1 3234.q 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/2Z\Z/2\Z 4.9487379734.948737973 [1,1,1,692518,221512829][1, 1, 1, -692518, 221512829] y2+xy+y=x3+x2692518x+221512829y^2+xy+y=x^3+x^2-692518x+221512829 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 21.8.0-3.a.1.2, \ldots
3234.q2 3234.q 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/2Z\Z/2\Z 2.4743689862.474368986 [1,1,1,40328,3942245][1, 1, 1, -40328, 3942245] y2+xy+y=x3+x240328x+3942245y^2+xy+y=x^3+x^2-40328x+3942245 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 14.6.0.b.1, 21.8.0-3.a.1.2, \ldots
3234.q3 3234.q 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/2Z\Z/2\Z 1.6495793241.649579324 [1,1,1,17788,465403][1, 1, 1, -17788, -465403] y2+xy+y=x3+x217788x465403y^2+xy+y=x^3+x^2-17788x-465403 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 21.8.0-3.a.1.1, \ldots
3234.q4 3234.q 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 11 Z/2Z\Z/2\Z 0.8247896620.824789662 [1,1,1,3772,51451][1, 1, 1, 3772, -51451] y2+xy+y=x3+x2+3772x51451y^2+xy+y=x^3+x^2+3772x-51451 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 14.6.0.b.1, 21.8.0-3.a.1.1, \ldots
3234.r1 3234.r 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,1,2570492,1587302179][1, 1, 1, -2570492, -1587302179] y2+xy+y=x3+x22570492x1587302179y^2+xy+y=x^3+x^2-2570492x-1587302179 2.3.0.a.1, 28.6.0.c.1, 88.6.0.?, 616.12.0.?
3234.r2 3234.r 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,1,155772,26427171][1, 1, 1, -155772, -26427171] y2+xy+y=x3+x2155772x26427171y^2+xy+y=x^3+x^2-155772x-26427171 2.3.0.a.1, 14.6.0.b.1, 88.6.0.?, 616.12.0.?
3234.s1 3234.s 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,1,493186,133104971][1, 1, 1, -493186, 133104971] y2+xy+y=x3+x2493186x+133104971y^2+xy+y=x^3+x^2-493186x+133104971 2.3.0.a.1, 5.12.0.a.2, 8.6.0.d.1, 10.36.0.a.1, 35.24.0-5.a.2.2, \ldots
3234.s2 3234.s 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,1,492696,133383291][1, 1, 1, -492696, 133383291] y2+xy+y=x3+x2492696x+133383291y^2+xy+y=x^3+x^2-492696x+133383291 2.3.0.a.1, 5.12.0.a.2, 8.6.0.a.1, 10.36.0.a.1, 35.24.0-5.a.2.2, \ldots
3234.s3 3234.s 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,1,2206,29989][1, 1, 1, -2206, -29989] y2+xy+y=x3+x22206x29989y^2+xy+y=x^3+x^2-2206x-29989 2.3.0.a.1, 5.12.0.a.1, 8.6.0.d.1, 10.36.0.a.2, 35.24.0-5.a.1.2, \ldots
3234.s4 3234.s 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,1,1,5634,186789][1, 1, 1, 5634, -186789] y2+xy+y=x3+x2+5634x186789y^2+xy+y=x^3+x^2+5634x-186789 2.3.0.a.1, 5.12.0.a.1, 8.6.0.a.1, 10.36.0.a.2, 35.24.0-5.a.1.2, \ldots
3234.t1 3234.t 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,0,17249,870519][1, 0, 0, -17249, 870519] y2+xy=x317249x+870519y^2+xy=x^3-17249x+870519 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 56.24.0-8.m.1.1, 264.24.0.?, \ldots
3234.t2 3234.t 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,0,1079,13509][1, 0, 0, -1079, 13509] y2+xy=x31079x+13509y^2+xy=x^3-1079x+13509 2.6.0.a.1, 8.12.0.b.1, 28.12.0-2.a.1.1, 56.24.0-8.b.1.2, 132.12.0.?, \ldots
3234.t3 3234.t 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,0,589,25955][1, 0, 0, -589, 25955] y2+xy=x3589x+25955y^2+xy=x^3-589x+25955 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 28.12.0-4.c.1.1, 56.24.0-8.d.1.1, \ldots
3234.t4 3234.t 237211 2 \cdot 3 \cdot 7^{2} \cdot 11 00 Z/2Z\Z/2\Z 11 [1,0,0,99,15][1, 0, 0, -99, -15] y2+xy=x399x15y^2+xy=x^3-99x-15 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 28.12.0-4.c.1.2, 56.24.0-8.m.1.3, \ldots
Next   displayed columns for results