Properties

Label 322752.do
Number of curves $4$
Conductor $322752$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("do1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 322752.do have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(41\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 322752.do do not have complex multiplication.

Modular form 322752.2.a.do

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} - 4 q^{7} + q^{9} - 4 q^{11} + 2 q^{13} + 2 q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 322752.do

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
322752.do1 322752do4 \([0, 1, 0, -47231617, -124948340257]\) \(9357915116017/538002\) \(669926183892807057408\) \([2]\) \(30965760\) \(3.0597\)  
322752.do2 322752do2 \([0, 1, 0, -3122177, -1715386785]\) \(2703045457/544644\) \(678196877521113317376\) \([2, 2]\) \(15482880\) \(2.7131\)  
322752.do3 322752do1 \([0, 1, 0, -970497, 343770975]\) \(81182737/5904\) \(7351727669605564416\) \([2]\) \(7741440\) \(2.3665\) \(\Gamma_0(N)\)-optimal
322752.do4 322752do3 \([0, 1, 0, 6560383, -10234103073]\) \(25076571983/50863698\) \(-63336052839610638139392\) \([2]\) \(30965760\) \(3.0597\)