Properties

Label 320320dl
Number of curves $4$
Conductor $320320$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 320320dl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 320320dl do not have complex multiplication.

Modular form 320320.2.a.dl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 3 q^{9} + q^{11} + q^{13} + 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 320320dl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320320.dl3 320320dl1 \([0, 0, 0, -33452, -2354896]\) \(15792469779969/400400\) \(104962457600\) \([2]\) \(688128\) \(1.2225\) \(\Gamma_0(N)\)-optimal
320320.dl2 320320dl2 \([0, 0, 0, -34732, -2164944]\) \(17675559395649/2505002500\) \(656671375360000\) \([2, 2]\) \(1376256\) \(1.5691\)  
320320.dl1 320320dl3 \([0, 0, 0, -146732, 19473456]\) \(1332779492447649/146356560350\) \(38366494156390400\) \([4]\) \(2752512\) \(1.9157\)  
320320.dl4 320320dl4 \([0, 0, 0, 56788, -11646416]\) \(77259787831071/268236718750\) \(-70316646400000000\) \([2]\) \(2752512\) \(1.9157\)