Properties

Label 31920z
Number of curves $4$
Conductor $31920$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 31920z have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 31920z do not have complex multiplication.

Modular form 31920.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} + q^{9} - 4 q^{11} - 2 q^{13} + q^{15} - 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 31920z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31920.k4 31920z1 \([0, -1, 0, 55384, -51851664]\) \(4586790226340951/286015269335040\) \(-1171518543196323840\) \([2]\) \(387072\) \(2.1467\) \(\Gamma_0(N)\)-optimal
31920.k3 31920z2 \([0, -1, 0, -1792936, -888770960]\) \(155617476551393929129/6633105589454400\) \(27169200494405222400\) \([2, 2]\) \(774144\) \(2.4933\)  
31920.k2 31920z3 \([0, -1, 0, -4772136, 2834037360]\) \(2934284984699764805929/851931751022747640\) \(3489512452189174333440\) \([2]\) \(1548288\) \(2.8398\)  
31920.k1 31920z4 \([0, -1, 0, -28386856, -58203987344]\) \(617611911727813844500009/1197723879765000\) \(4905877011517440000\) \([2]\) \(1548288\) \(2.8398\)