Show commands: SageMath
Rank
The elliptic curves in class 31920z have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 31920z do not have complex multiplication.Modular form 31920.2.a.z
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 31920z
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
31920.k4 | 31920z1 | \([0, -1, 0, 55384, -51851664]\) | \(4586790226340951/286015269335040\) | \(-1171518543196323840\) | \([2]\) | \(387072\) | \(2.1467\) | \(\Gamma_0(N)\)-optimal |
31920.k3 | 31920z2 | \([0, -1, 0, -1792936, -888770960]\) | \(155617476551393929129/6633105589454400\) | \(27169200494405222400\) | \([2, 2]\) | \(774144\) | \(2.4933\) | |
31920.k2 | 31920z3 | \([0, -1, 0, -4772136, 2834037360]\) | \(2934284984699764805929/851931751022747640\) | \(3489512452189174333440\) | \([2]\) | \(1548288\) | \(2.8398\) | |
31920.k1 | 31920z4 | \([0, -1, 0, -28386856, -58203987344]\) | \(617611911727813844500009/1197723879765000\) | \(4905877011517440000\) | \([2]\) | \(1548288\) | \(2.8398\) |