Properties

Label 319056.g
Number of curves $4$
Conductor $319056$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 319056.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(17\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 319056.g do not have complex multiplication.

Modular form 319056.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - 4 q^{7} + q^{9} - 4 q^{11} - 2 q^{13} + 2 q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 319056.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
319056.g1 319056g4 \([0, -1, 0, -217424, -32949072]\) \(45989074372/7555707\) \(186753432633633792\) \([2]\) \(3932160\) \(2.0357\)  
319056.g2 319056g2 \([0, -1, 0, -61364, 5379264]\) \(4135597648/385641\) \(2382959679162624\) \([2, 2]\) \(1966080\) \(1.6891\)  
319056.g3 319056g1 \([0, -1, 0, -59919, 5665374]\) \(61604313088/621\) \(239830885584\) \([2]\) \(983040\) \(1.3425\) \(\Gamma_0(N)\)-optimal
319056.g4 319056g3 \([0, -1, 0, 71576, 25373440]\) \(1640689628/12223143\) \(-302117844540791808\) \([2]\) \(3932160\) \(2.0357\)