Properties

Label 3185.a
Number of curves $1$
Conductor $3185$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 3185.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3185.a do not have complex multiplication.

Modular form 3185.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} - q^{4} + q^{5} + 3 q^{6} + 3 q^{8} + 6 q^{9} - q^{10} + 3 q^{12} + q^{13} - 3 q^{15} - q^{16} - 6 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 3185.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3185.a1 3185g1 \([1, -1, 1, -246357, 47126706]\) \(-688691336801860161/8251953125\) \(-19812939453125\) \([]\) \(29040\) \(1.7007\) \(\Gamma_0(N)\)-optimal