Properties

Label 318402.bk
Number of curves $4$
Conductor $318402$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 318402.bk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 318402.bk do not have complex multiplication.

Modular form 318402.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} + 2 q^{13} + q^{16} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 318402.bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
318402.bk1 318402bk4 \([1, -1, 0, -1747579227, -28118792007181]\) \(5417927574172875/247646\) \(26979410486633660025642\) \([2]\) \(119439360\) \(3.7842\)  
318402.bk2 318402bk3 \([1, -1, 0, -109400937, -437838169735]\) \(1329185824875/8941324\) \(974098715464773198820548\) \([2]\) \(59719680\) \(3.4376\)  
318402.bk3 318402bk2 \([1, -1, 0, -23432397, -31533372963]\) \(9521387989875/2634569336\) \(393716161812780740539368\) \([2]\) \(39813120\) \(3.2349\)  
318402.bk4 318402bk1 \([1, -1, 0, -8573637, 9271753749]\) \(466385893875/21509824\) \(3214478066994565019712\) \([2]\) \(19906560\) \(2.8883\) \(\Gamma_0(N)\)-optimal