Properties

Label 317400cs
Number of curves $2$
Conductor $317400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 317400cs have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 317400cs do not have complex multiplication.

Modular form 317400.2.a.cs

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{7} + q^{9} + 2 q^{11} + 2 q^{13} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 317400cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
317400.cs2 317400cs1 \([0, 1, 0, -850808, 427701888]\) \(-28756228/16767\) \(-39713884013808000000\) \([2]\) \(6488064\) \(2.4634\) \(\Gamma_0(N)\)-optimal
317400.cs1 317400cs2 \([0, 1, 0, -15133808, 22652049888]\) \(80919167474/14283\) \(67660691282784000000\) \([2]\) \(12976128\) \(2.8099\)