Properties

Label 317400.c
Number of curves $4$
Conductor $317400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 317400.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 317400.c do not have complex multiplication.

Modular form 317400.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{7} + q^{9} + 2 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 317400.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
317400.c1 317400c4 \([0, -1, 0, -38938808, -93510806388]\) \(1378334691074/69\) \(326863242912000000\) \([2]\) \(17301504\) \(2.8351\)  
317400.c2 317400c3 \([0, -1, 0, -4024808, 674469612]\) \(1522096994/839523\) \(3976945076510304000000\) \([2]\) \(17301504\) \(2.8351\)  
317400.c3 317400c2 \([0, -1, 0, -2437808, -1455284388]\) \(676449508/4761\) \(11276781880464000000\) \([2, 2]\) \(8650752\) \(2.4886\)  
317400.c4 317400c1 \([0, -1, 0, -57308, -50789388]\) \(-35152/1863\) \(-1103163444828000000\) \([2]\) \(4325376\) \(2.1420\) \(\Gamma_0(N)\)-optimal