Properties

Label 31680bv
Number of curves $2$
Conductor $31680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 31680bv have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 31680bv do not have complex multiplication.

Modular form 31680.2.a.bv

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 3 q^{7} + q^{11} + 6 q^{13} + 7 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 31680bv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31680.dv2 31680bv1 \([0, 0, 0, 5748, 677104]\) \(109902239/1100000\) \(-210213273600000\) \([]\) \(115200\) \(1.4294\) \(\Gamma_0(N)\)-optimal
31680.dv1 31680bv2 \([0, 0, 0, -3421452, 2435924464]\) \(-23178622194826561/1610510\) \(-307773253877760\) \([]\) \(576000\) \(2.2341\)