Show commands: SageMath
Rank
The elliptic curves in class 3150n have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 3150n do not have complex multiplication.Modular form 3150.2.a.n
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3150n
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3150.n2 | 3150n1 | \([1, -1, 0, 198, 74196]\) | \(46969655/130691232\) | \(-2381847703200\) | \([]\) | \(4800\) | \(1.0539\) | \(\Gamma_0(N)\)-optimal |
3150.n1 | 3150n2 | \([1, -1, 0, -984492, 376227666]\) | \(-14822892630025/42\) | \(-299003906250\) | \([]\) | \(24000\) | \(1.8586\) |