Properties

Label 3150.bn
Number of curves $2$
Conductor $3150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3150.bn have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3150.bn do not have complex multiplication.

Modular form 3150.2.a.bn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{7} + q^{8} + 4 q^{13} + q^{14} + q^{16} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3150.bn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3150.bn1 3150bd2 \([1, -1, 1, -4604555, -3801870053]\) \(280844088456303/614656\) \(23629441500000000\) \([2]\) \(92160\) \(2.3881\)  
3150.bn2 3150bd1 \([1, -1, 1, -284555, -60750053]\) \(-66282611823/3211264\) \(-123451776000000000\) \([2]\) \(46080\) \(2.0416\) \(\Gamma_0(N)\)-optimal