Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-4604555x-3801870053\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-4604555xz^2-3801870053z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-73672875x-243393356250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-4949/4, 4945/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 3150 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $23629441500000000$ | = | $2^{8} \cdot 3^{9} \cdot 5^{9} \cdot 7^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{280844088456303}{614656} \) | = | $2^{-8} \cdot 3^{3} \cdot 7^{-4} \cdot 83^{3} \cdot 263^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3881368081928148179680307284$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.35709915736615726847102730079$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0970014013752223$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.155821712609222$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.10306298171119530952939762601$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{3}\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.2980154147582499049407240324 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.298015415 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.103063 \cdot 1.000000 \cdot 128}{2^2} \\ & \approx 3.298015415\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 92160 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
$7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.29 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \), index $96$, genus $3$, and generators
$\left(\begin{array}{rr} 1136 & 1 \\ 559 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 8 \\ 48 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 241 & 16 \\ 964 & 65 \end{array}\right),\left(\begin{array}{rr} 1673 & 8 \\ 1672 & 9 \end{array}\right),\left(\begin{array}{rr} 16 & 1055 \\ 1311 & 16 \end{array}\right),\left(\begin{array}{rr} 211 & 226 \\ 210 & 211 \end{array}\right),\left(\begin{array}{rr} 352 & 5 \\ 387 & 16 \end{array}\right)$.
The torsion field $K:=\Q(E[1680])$ is a degree-$11890851840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1680\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 15 = 3 \cdot 5 \) |
$3$ | additive | $2$ | \( 350 = 2 \cdot 5^{2} \cdot 7 \) |
$5$ | additive | $14$ | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
$7$ | split multiplicative | $8$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 3150.bn
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 3150.e1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.13500.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.4.746496000000.21 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2916000000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.1312746750000.1 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | split | add | add | split |
$\lambda$-invariant(s) | 4 | - | - | 1 |
$\mu$-invariant(s) | 0 | - | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.