Properties

Label 31200.be
Number of curves $1$
Conductor $31200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 31200.be1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 31200.be do not have complex multiplication.

Modular form 31200.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 5 q^{7} + q^{9} - q^{11} - q^{13} - 3 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 31200.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.be1 31200bi1 \([0, -1, 0, 467, 26437]\) \(175616/4875\) \(-312000000000\) \([]\) \(46080\) \(0.88562\) \(\Gamma_0(N)\)-optimal