Properties

Label 310464.ey
Number of curves $4$
Conductor $310464$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ey1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 310464.ey have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 310464.ey do not have complex multiplication.

Modular form 310464.2.a.ey

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + q^{11} + 2 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 310464.ey

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
310464.ey1 310464ey3 \([0, 0, 0, -145739916, 677198252304]\) \(15226621995131793/2324168\) \(52254441186873311232\) \([2]\) \(28311552\) \(3.1892\)  
310464.ey2 310464ey4 \([0, 0, 0, -17038476, -10395287280]\) \(24331017010833/12004097336\) \(269889008989674839998464\) \([2]\) \(28311552\) \(3.1892\)  
310464.ey3 310464ey2 \([0, 0, 0, -9135756, 10515309840]\) \(3750606459153/45914176\) \(1032291817732517658624\) \([2, 2]\) \(14155776\) \(2.8426\)  
310464.ey4 310464ey1 \([0, 0, 0, -104076, 425116944]\) \(-5545233/3469312\) \(-78000798506353164288\) \([2]\) \(7077888\) \(2.4960\) \(\Gamma_0(N)\)-optimal