Properties

Label 309738.y
Number of curves $1$
Conductor $309738$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 309738.y1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 309738.y do not have complex multiplication.

Modular form 309738.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 3 q^{7} - q^{8} + q^{9} + q^{10} + q^{11} + q^{12} + q^{13} + 3 q^{14} - q^{15} + q^{16} - 4 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 309738.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
309738.y1 309738y1 \([1, 0, 1, -16614, -868040]\) \(-10779215329/658944\) \(-31000601009664\) \([]\) \(1026432\) \(1.3434\) \(\Gamma_0(N)\)-optimal