Properties

Label 30960f
Number of curves $1$
Conductor $30960$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 30960f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30960.e1 30960f1 \([0, 0, 0, -3, -862]\) \(-2/215\) \(-320993280\) \([]\) \(10752\) \(0.31113\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 30960f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 30960f do not have complex multiplication.

Modular form 30960.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{5} - 3q^{7} - 2q^{11} - q^{13} + 6q^{17} + q^{19} + O(q^{20})\)  Toggle raw display