Properties

Label 306128.m
Number of curves $1$
Conductor $306128$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 306128.m1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(19\)\(1\)
\(53\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 306128.m do not have complex multiplication.

Modular form 306128.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} + q^{7} - 3 q^{9} - 3 q^{11} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 306128.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
306128.m1 306128m1 \([0, 0, 0, 352336, -45982736]\) \(25102282752/19266931\) \(-3712736227578720256\) \([]\) \(3974400\) \(2.2513\) \(\Gamma_0(N)\)-optimal