Properties

Label 305760u
Number of curves $4$
Conductor $305760$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 305760u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 305760u do not have complex multiplication.

Modular form 305760.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} - q^{13} + q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 305760u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
305760.u3 305760u1 \([0, -1, 0, -16186, 585040]\) \(62287505344/16769025\) \(126262977422400\) \([2, 2]\) \(983040\) \(1.4139\) \(\Gamma_0(N)\)-optimal
305760.u1 305760u2 \([0, -1, 0, -239136, 45085860]\) \(25107427013768/2985255\) \(179820679933440\) \([2]\) \(1966080\) \(1.7605\)  
305760.u4 305760u3 \([0, -1, 0, 41144, 3749656]\) \(127871714872/175573125\) \(-10575873322560000\) \([2]\) \(1966080\) \(1.7605\)  
305760.u2 305760u4 \([0, -1, 0, -93361, -10481855]\) \(186756901696/8996715\) \(4335429726351360\) \([2]\) \(1966080\) \(1.7605\)