Properties

Label 30492.t
Number of curves $4$
Conductor $30492$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 30492.t have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30492.t do not have complex multiplication.

Modular form 30492.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 2 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 30492.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30492.t1 30492n4 \([0, 0, 0, -1991055, -1081365626]\) \(2640279346000/3087\) \(1020610974797568\) \([2]\) \(311040\) \(2.1631\)  
30492.t2 30492n3 \([0, 0, 0, -123420, -17187203]\) \(-10061824000/352947\) \(-7293115924074288\) \([2]\) \(155520\) \(1.8165\)  
30492.t3 30492n2 \([0, 0, 0, -30855, -668162]\) \(9826000/5103\) \(1687132427726592\) \([2]\) \(103680\) \(1.6138\)  
30492.t4 30492n1 \([0, 0, 0, 7260, -81191]\) \(2048000/1323\) \(-27337793967792\) \([2]\) \(51840\) \(1.2672\) \(\Gamma_0(N)\)-optimal