Properties

Label 304200dz
Number of curves $2$
Conductor $304200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 304200dz have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 304200dz do not have complex multiplication.

Modular form 304200.2.a.dz

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 4 q^{11} - 8 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 304200dz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
304200.dz2 304200dz1 \([0, 0, 0, -11521575, 869008520250]\) \(-445090032/858203125\) \(-326138064310560937500000000\) \([2]\) \(111476736\) \(3.7664\) \(\Gamma_0(N)\)-optimal
304200.dz1 304200dz2 \([0, 0, 0, -1437459075, 20722336332750]\) \(216092050322508/3016755625\) \(4585762094657935230000000000\) \([2]\) \(222953472\) \(4.1130\)