Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-136833x-156757537\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-136833xz^2-156757537z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-11083500x-114242994000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(433097698/690561, 1218482136125/573856191)$ | $18.761555702446310391558088761$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 30400 \) | = | $2^{6} \cdot 5^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-10445360463872000000$ | = | $-1 \cdot 2^{45} \cdot 5^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( -\frac{69173457625}{2550136832} \) | = | $-1 \cdot 2^{-27} \cdot 5^{3} \cdot 19^{-1} \cdot 821^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3296093380142117323781897689$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.48516961095724358095196192010$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.054621266416818$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.96628583555341$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $18.761555702446310391558088761$ |
|
Real period: | $\Omega$ | ≈ | $0.099645067739014285700786619732$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.4779859554382093957939280620 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.477985955 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.099645 \cdot 18.761556 \cdot 4}{1^2} \\ & \approx 7.477985955\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 497664 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{35}^{*}$ | additive | 1 | 6 | 45 | 27 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 27.36.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 20520 = 2^{3} \cdot 3^{3} \cdot 5 \cdot 19 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 15391 & 16470 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4103 & 0 \\ 0 & 20519 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 14698 & 13759 \end{array}\right),\left(\begin{array}{rr} 12284 & 12285 \\ 14895 & 12824 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 5041 & 75 \\ 13965 & 14456 \end{array}\right),\left(\begin{array}{rr} 20467 & 54 \\ 20466 & 55 \end{array}\right),\left(\begin{array}{rr} 8896 & 16425 \\ 4895 & 12976 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[20520])$ is a degree-$22058061004800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/20520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 475 = 5^{2} \cdot 19 \) |
$5$ | additive | $14$ | \( 1216 = 2^{6} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 30400d
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 38a2, its twist by $40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-30}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.152.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.3511808.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.75064896000.7 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.164166927552000.2 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.623808000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.206803048640385024000000.2 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.2.152692555497006045386244096000000000.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.0.1597218061967362443766361801733439488000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | add | ord | ord | ord | ord | nonsplit | ord | ord | ord | ord | ss | ord | ss |
$\lambda$-invariant(s) | - | 5 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 2 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.