Properties

Label 30276j
Number of curves $2$
Conductor $30276$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 30276j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30276j do not have complex multiplication.

Modular form 30276.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 4 q^{7} - 6 q^{11} + 2 q^{13} + 2 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 30276j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30276.p1 30276j1 \([0, 0, 0, -70644, -7194755]\) \(5619712/29\) \(201202557268176\) \([2]\) \(151200\) \(1.5904\) \(\Gamma_0(N)\)-optimal
30276.p2 30276j2 \([0, 0, 0, -32799, -14877290]\) \(-35152/841\) \(-93357986572433664\) \([2]\) \(302400\) \(1.9370\)